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Existence and Uniqueness of Solutions for the Couette
Problem
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We study existence and uniqueness results for the one-dimensional Boltzmann
equation with inflow and diffusive boundary conditions. Our focus, partly
encompasses some of the properties of the Boltzmann collision gain term which
play a significant role in existence and uniqueness results. A series of estimates
are proven on the collision term which is shown to produce a suitable function
space in which the contraction mapping arguments are available.
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1. INTRODUCTION

Throughout this paper we let v = (v1, v2, v3)∈R
3 denote a velocity vector

with x−, y− and z components v1, v2, v3. In addition, we use x to denote
the (one-dimensional) position variable in the interval [0,1]. We study the
one-dimensional Boltzmann equation in the slab given by

v1
∂f

∂x
=J (f, f ), (1)

where one recalls f = f (x, v) to be the one particle distribution function
and J (f, f ) the collision operator describing the rate of change of f due
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to binary collisions between gas particles. The bilinear operator J (f, f )

takes on the explicit form

J (f, f )=
∫

R3×S2
[f (v′)f (v′

∗)−f (v)f (v∗)]B(v −v∗, n) dndv∗,

where n is a unit vector in the unit sphere S
2 {n ∈ R

3
∣∣|n| = 1} with

Lebesgue measure dn. v, v∗ ∈ R
3 are the pre-collisional velocities and

v′, v′∗, the post-collisional velocities. In the event of a collision, (v, v∗) will
undergo the transformation

(v, v∗)→ (v′, v′
∗),

where the post-collisional velocities are expressed in terms of the pre-
collisional velocities by the relations

v′ = v −n(n · (v −v∗)),
v′
∗ = v∗ +n(n · (v −v∗)).

B is the collision kernel and it depends on |v −v∗| and (n · (v −v∗)) only.
In general, after an angular cutoff it takes the form

B(v −v∗)=|v −v∗|βh(θ),

where θ is the polar angle of n relative to a polar axis in direction v −v∗,
and h is assumed to be an integrable function on [0, π ] with

∫
s+ h(θ)

dn = 1, where s+ is the hemi-sphere corresponding to (v − v∗, n) > 0.
The integer β is chosen from the set {−1,0,1}, which describes Maxwell-
ian molecules (β = 0), a hard sphere gas (β = 1), and a soft sphere gas
(β =−1). According to Grad(14) B satisfies the following conditions:

• B ∈L∞
loc(R

3,S
2),

• B(v,n)�b1
|(n·v)|

|v| (1+|v|γ ),

•
∫

S2 B(v,n) dn�b◦|v|(1+|v|)−1,

where γ ∈ [0,1] and b◦, b1 are positive constants. Although generalizations
are available, we will deal with the case, where we have only hard sphere
interactions, where B yields the expression

B(v −v∗, n)=|n · (v −v∗)|= |(v −v∗)|| cos θ |.
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The bilinear operator J (f, f ) is usually decomposed as

J (f, f )=J+(f, f )−J−(f, f ),

where J+(f, f ) is the gain term and J−(f, f ) is the loss term due to
binary collisions of gas particles. It is immediate that this decomposition
yields the following expressions:

J+(f, f ) =
∫

R3×S2
f (v′)f (v′

∗)B(v −v∗, n) dndv∗,

J−(f, f ) = f ν(f ),

ν(f ) =
∫

R3
v

f (v∗)
[∫

S2
B(v −v∗, n) dn

]
dv∗,

where ν(f ) determines the frequency of collisions associated with the
distribution function f .

Arkeryd et al.(1) have studied the global existence problem for the
steady Boltzmann equation in a slab with inflow boundary conditions.
They introduce a measure theoretic formulation of the problem, and for
a truncated collision kernel, they prove existence of a solution based on
weak∗ compactness of uniformly bounded measures. Arkeryd and Nouri(2)

solve the problem with both inflow and diffuse reflective boundary con-
ditions. However, their arguments rely on using the boundedness of the
Boltzmann entropy production together with the boundedness of mass and
energy, in order to prove weak compactness in L1. They then solve the
existence problem for a sequence of functions for which these estimates
hold. Illner et al.,(15) have generalized the work in ref. 1 and prove global
existence for the case of purely diffusive boundary conditions. They have
also obtained both existence and uniqueness of solutions for one, two, and
three dimensions provided that the size of the domain is made sufficiently
small.

One common shortcoming of all these earlier studies is the unphys-
ical truncations, which are made on the collision kernel. The reasons for
these truncations are twofold: first, in a neighborhood of zero in the veloc-
ity space, the non-linear term in the steady Boltzmann equation becomes
significantly large. Therefore, the kernel is truncated in such a way that
collisions between particles having small velocities are ignored. Second, for
hard sphere interactions, the collision term becomes unbounded as v→∞,
and so additional truncations are made in order to control the magnitude
of the velocities so that it will not grow without bound.
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In more recent work, general L1 solutions for the stationary, full non-
linear equations of Boltzmann type have been obtained by weak compact-
ness techniques, under no other restrictions except Grad’s angular cut-off.
Examples include the Povzner equation in bounded domains of R

n, as
obtained in ref. 3 and general L1 solutions of the stationary non-linear
Boltzmann equation in a slab.(4) In these papers the entropy dissipation
term provides the most useful control and is the tool used to get rid of
the small velocity truncations.

The slab case was the beginning of a long series of papers, where the
stationary Boltzmann equation was studied in a Couette setting between
two coaxial, rotating cylinders (two-roll configuration) with given Max-
wellian indata on the cylinders as in refs. 6–9. The, first three papers of
the series, focused on the close to equilibrium frame. However, further
improvements are made in ref. 9, where the existence results far from equi-
librium for the two-roll problem are studied. Here, the use of the entropy
dissipation control in delivering existence results has been generalized from
the slab case, to cylinders. A particular R

2 case for the two-roll config-
uration is studied, where existence is shown without any small velocity
truncations. This is a big improvement since up until now, the removal
of the small velocity cut-off for the nonlinear, stationary Boltzmann equa-
tion with large boundary data, remained an open problem in more than
one space dimensions. We refer the reader to a previous study by Arkeryd
and Nouri,(5) where existence results for the n-dimensional case, could be
obtained only under supplementary small velocity truncations.

Although, the more recent studies have advanced in proving exis-
tence results for the non-linear stationary Boltzmann equation without the
small velocity truncations, they do not yield uniqueness being that they are
essentially based on compactness arguments. The focus of this paper is on
proving both existence and uniqueness of solutions to the one-dimensional
steady Boltzmann equation with inflow and diffusive reflective boundary
conditions without truncations on the collision kernel. This was estab-
lished for large mean free paths by Maslova.(16) In her work, it is shown
that the collision operator has special properties which make it possible
to avoid truncations. These properties are entailed in estimates on the col-
lision term which are then needed in producing function spaces with the
contractive property.

The results presented, are based on sketches provided in Maslova’s
monograph,(16) where the proofs are either left out or incomplete. Here, we
present the ideas clearly, and provide rigorous proofs of the Lemma’s, which
lead to the main theorem. Although, the contribution of the current paper is
mostly in filling in details and adding clarity to the work of Maslova, some
modifications have also been made. Lemma 2.5 in Chapter 3 of Maslova’s
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monograph(16) has been modified, and the restriction to convex functions
removed. This lemma, which is presented as Lemma 2 in the current paper,
establishes some regularity in the velocity space. This is a key lemma in
providing the necessary bounds on the collision term.

The scope of this paper is as follows: in Section 2, we study the steady
Boltzmann equation with inflow boundary conditions, where we reformu-
late the problem as a fixed point problem. In Section 3, certain estimates
are proved, revealing the special nature of the collision term. These esti-
mates are then used, in addition to the contraction mapping theorem in
proving existence and uniqueness for the inflow case in Section 4. The rest
of the paper is dedicated to the diffuse reflective case. We make one final
remark. The boundary value problems discussed here are restricted to par-
ticles in small bounded domains, and hence are not global in nature as in
the Arkeryd and Nouri papers. However, the results are constructive and
prove both existence and uniqueness.

2. INFLOW BOUNDARY CONDITIONS

In the rest of this paper, we will deal with existence and uniqueness
of solutions to the steady Boltzmann equation in a slab with given bound-
ary conditions. In particular in this section we will deal with the boundary
value problem

v1
∂f

∂x
= εJ (f, f ), x ∈ (0,1), (2)

f (0, v) = f −(0, v), v1 >0, (3)

f (1, v) = f −(1, v), v1 <0 (4)

in which the size of the domain is bounded in terms of a small parame-
ter ε; which is a measure of the inverse mean free path of a particle. The
boundary conditions (3) and (4) are called inflow boundary conditions,
where a function f −(i, v), i ={0,1} is prescribed at the boundary, i.e., the
two end points of the slab. We proceed with a representation of the solu-
tion to problem (2)–(4) into an integral equation, which is later shown to
have a unique fixed point.

2.1. Steady Solution Operators

From the decomposition: J (f, f )=J+(f, f )−f ν(f ), Eq. (2) is writ-
ten as

∂f (x, v)

∂x
+ ε

v1
f ν(f )=J+(f, f ).
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Holding v fixed, we treat the equation as an ordinary differential equation.
Therefore, multiplying through by the integrating factor

exp{εv−1
1

∫ x

y

ν(z, v) dz}

and applying the boundary conditions (3) and (4) we convert the problem
to the integral equation

f =A(f ), A(f )=Wf − + εUJ+(f, f ), (5)

where the operators W,U admit the following representations:

(Wf −)(x, v) = f −(χ(v1), v)	(χ(v1)), (6)

(UJ+(f, f ))(x, v) = v−1
1

∫ x

χ(v1)

J+(f, f )(y, v)	(x, y) dy (7)

with

χ(v1) = 1
2
(1− sgn v1),

	(x, y) = exp
{
−εv−1

1

∫ x

y

ν(z, v) dz

}
,

ν(x, v) = ν(f )(x, v).

Remark 1. We notice that even though v1 can be positive or nega-
tive, the sign of the operator UJ+(f, f )(x, v) will always be non-negative.
This is an important observation for the proof of Lemma 6.

2.2. Norms Defined

We now introduce the weight function

ϕ(v)= exp(s|v|2)(1+|v|2)r/2, s �0, r �0 (8)

with the weighted norms

‖f ‖−1 = sup
ω

∫
R3

v

ϕ(v)|v −ω|−1‖f (., v)‖L∞ dv, (9)

‖f ‖ =
∫

R3
v

ϕ(v)‖f (., v)‖L∞ dv, (10)

‖f ‖2 = sup
E

∫
E

ϕ(v)‖f (., v)‖L∞(0,1) dσ (v), (11)
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where the sup in (11) is to be taken over all planes E in R
3
v. In addition,

we consider the Banach space

X◦ ={f :ϕf ∈L1(R3
v,L

∞())} (12)

with the norm ‖.‖ defined above. We will use the contraction mapping the-
orem to prove that Eq. (5) has a unique solution for a sufficiently small ε.
However, first we must define the proper function set in which the contrac-
tion mapping arguments are available. Henceforth, we let aj (j =1,2,3) be
some positive constants and consider sets A⊂X◦ defined by

A={f ∈X◦ :f �0,‖f ‖�a1, ν(f )�a2,‖f ‖−1 �a3,‖f ‖2 �a4}.

We will show that there are constants ε, a1, a2, a3, and a4 such that the
Banach fixed point theorem is applicable in A. The following Lemma
will then give the necessary contraction property and will be proved in
Section 4.

Lemma 1. There exists a constant C such that

‖Af −Ag‖�Cε ln
1
ε
‖f −g‖, s >0, r �1

for f, g ∈A.

Upon the proof of Lemma 1, for sufficiently small ε we can state the main
result of Section 4, namely.

Theorem 1. There exists a constant a5 such that the problems
(2)–(4), has a unique solution if ε �a5.

The proof of the key contraction bound depends on certain estimates on
the Boltzmann collision operator. These estimates exploit the properties of
the collision gain term, which make it possible to prove Theorem 1 with-
out unphysical truncations on the collision kernel. These estimates are dis-
cussed further in Section 3.

3. SOME IMPORTANT ESTIMATES

We begin with a lemma, which shows that the collision operators
introduce some regularity in the velocity space. The proof of this lemma
is used later in establishing other bounds on the collision operator. As we
will see in the following sections, these estimates are used in proving the
required existence and uniqueness results.
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3.1. A Regularity Estimate

Lemma 2. Let

V̂k(f )= sup
ω

∫
R3

v

|ω−p|−kf (p) dp for 0<k <2.

Then for γ ∈ [0,1] and any positive function h satisfying h(q)�h(v)h(v∗),
where q =v −n(n · (v −v∗)), we have

V̂k(hJ+(f, g))�C(2−k)−1V̂◦(f h)V̂k−γ (gh)

for some positive constant C.

Remark 2. In order to fully clarify the statement of Lemma 2, we
give some examples of the type of functions which satisfy the inequality
h(q)�h(v)h(v∗). For later purposes we look at functions of the type

h1(q)= (1+|q|2)r/2 and h2(q)= exp(s|q|2)

for r � 0, s > 0. We know that for particle velocities q, q∗, v, v∗, lying on
the collision sphere, the conservation of energy dictates that |q|2 +|q∗|2 =
|v|2 +|v∗|2, where we recall that v, v∗ are the pre-collisional velocities and
q, q∗ the post-collisional velocities. Therefore, it is easily verified that both
h1(q) and h2(q) satisfy the requirements in Lemma 2.

Proof. Let ϕ̄(v)=h(v)|ω−v|−k, and consider the average

〈ϕ̄(v)J+(f, g)〉=
∫

R3×R3×S2
f (v)g(v∗)ϕ̄(v′)B(v −v∗, n) dv dv∗ dn. (13)

We make the change of variables n → q = v − n(n · (v − v∗)), where n is
a unit vector which lives in the unit sphere S

2 directed along the vector
v −v′. q is a vector in R

3 which lives in the sphere Kvv∗ defined by

Kvv∗ ={q ∈R
3 ∣∣ |q − 1

2 (v +v∗)|= 1
2 |v −v∗|

}
.

We transform the integration variable n on the unit sphere to a new sphere
Kvv∗ of radius 1/2|v −v∗|.

From the definition of the set Kvv∗ we notice that q can also be writ-
ten as

q = 1
2
(v +v∗)+ 1

2
|v −v∗|e, e∈S

2
∗,
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where S
2∗ is the sphere with normal vector e having components

e= (sin φ1 cos θ1, sin φ1 sin θ1, cos φ1).

We want to express the polar and azimuthal angles of the unit sphere, in
terms of the polar and azimuthal angles of the new sphere with unit nor-
mal e. Now choosing the polar axis in direction v − v∗, i.e., n · (v − v∗)=
|v −v∗| cos φ, we have the following relations:

q1 =v1 − sin φ cos θ cos φ|v −v∗| = 1
2 (v1 +v∗1)+ 1

2 |v −v∗| sin φ1 cos θ1,

q2 =v2 − sin φ sin θ cos φ|v −v∗| = 1
2 (v2 +v∗2)+ 1

2 |v −v∗| sin φ1 sin θ1,

q3 =v3 − cos2 φ|v −v∗| = 1
2 (v3 +v∗3)+ 1

2 |v −v∗| cos φ1,

where v = (v1, v2, v3) and v∗ = (v∗1, v∗2, v∗3). Choosing Cartesian coordi-
nates (consistent with polar axis in direction v −v∗) such that

v −v∗ =

 0

0
v3 −v∗3


 ,

we arrive at the relations,

φ1 =2φ −π and θ1 =π + θ.

Therefore, we have,

sin φ = sin φ1

2 cos φ
and cos φ = (n · (v −v∗))

|v −v∗| = |q −v|
|v −v∗|

in which we can then express dn in terms of dq through the relation,

sin φ dφ dθ = sin φ1

2 cos φ

(
1
2

dφ1

)
dθ1

= 1
|q −v||v −v∗|

1
4
|v −v∗|2 sin φ1 dφ1 dθ1︸ ︷︷ ︸

dq

= 1
|q −v||v −v∗|dq.
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Summarizing,

〈ϕ̄(v)J+(f, g)〉=
∫

R3×R3
f (v)g(v∗)|v −v∗|−1I dv dv∗, (14)

where

I =
∫

Kvv∗
ϕ̄(q)B|q −v|−1 dq.

With respect to the kernel B, it is sufficient to assume that B satisfies

B(v,n)≤b1
|n.v|
|v| |v|γ

with γ ∈ [0,1], b1 >0 consistent with Grad’s assumptions mentioned in the
introduction. Thus, we have that for q ∈Kvv∗ , B(v−v∗, n) satisfies the esti-
mate

|q −v|−1B �b1|v −v∗|γ−1.

From the definition of V̂k(f ), the above estimate on B, and the fact that
ϕ̄(q)=h(q)|ω−q|−k we write

V̂k(hJ+(f, g)) = sup
ω

∫
R3

v

|ω−q|−kh(q)J+(f, g) dq

� sup
ω

b1

∫
R3×R3

f (v)g(v∗)|v −v∗|γ−2I1 dv dv∗,

where

I1 =
∫

Kvv∗
h(q)|ω−q|−k dq.

Since h(q)�h(v)h(v∗), I1 is estimated as

I1 �h(v)h(v∗)I2

with

I2 =
∫

Kvv∗
|ω−q|−k dq.
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Hence we are only left with estimating the integral I2. Taking

ω=|ω|

 0

0
1




and changing into polar coordinates, we have

|ω−q| = |R sin φ cos θ,R sin φ sin θ, |ω|−R cos φ|
=
[
R2 −2R|ω| cos φ +|ω|2

]1/2
.

Thus the integral I2 is written as

I2 =2πR2
∫ π

0
(R2 −2R|ω| cos φ +|ω|2)−k/2 sin φ dφ,

where R = (1/4)|v −v∗|. Integrating, we have

I2 = 2π

2−k
R2−k

[
(1+ (|ω|/R))2−k − (1− (|ω|/R))2−k

]

|ω|/R for |ω|�R

and

I2 = 2π

2−k
R2−k

[
((|ω|/R)+1)2−k − ((|ω|/R)−1)2−k

]

|ω|/R for |ω|>R.

Letting x =|ω|/R, we make the observation that for 0≤k <2,

(1+x)2−k − (1−x)2−k

x
� (1+x)2 − (1−x)2

x
=4, x ≤1

(x +1)2−k − (x −1)2−k

x
� (x +1)2 − (x −1)2

x
=4, x >1.

Therefore,

I2 ≤8π(2−k)−1R2−k, (15)
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which yields the estimate,

I1 � h(v)h(v∗)I2

� Ch(v)h(v∗)(2−k)−1|v −v∗|2−k

for some positive constant C. Finally,

V̂k(hJ+(f, g))

�C(2−k)−1 sup
ω

∫
R3×R3

f (v)g(v∗)|v −v∗|γ−kh(v)h(v∗) dv dv∗

=C(2−k)−1 sup
ω

∫
R3

f (v)h(v) dv

∫
R3

g(v∗)h(v∗)|v −v∗|γ−k dv∗

=C(2−k)−1V̂◦(f h)V̂k−γ (gh).

3.2. An Estimate on ‖J+(f, f )‖−1

Lemma 3. There exists a positive constant C such that

‖J+(f, g)‖−1 �C‖f ‖‖g‖

for all f, g ∈L∞.

Proof. We showed in Lemma 2 that functions of the form ϕ(v)

satisfy the condition ϕ(q) � ϕ(v)ϕ(v∗) for velocities q, v, v∗ lying on the
collision sphere. Hence, we can apply Lemma 2 with k = 1, γ = 1 and get
the estimate

V̂1(ϕJ+(f, g))�CV̂◦(ϕf )V̂◦(ϕg).

Applying the definition of V̂k, we have

V̂◦(ϕf ) =
∫

R3
v

ϕ(v)f (v) dv �‖f ‖,

V̂◦(ϕg) =
∫

R3
v

ϕ(v)g(v) dv �‖g‖,

which leads to the result

V̂1(ϕJ+(f, g))�C‖f ‖‖g‖.
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Therefore, adapting the definition of ‖.‖−1, and observing that

sup
x

J+(f, g)(v)�J+
(

sup
x

f (x, v), sup
x

g(x, v∗)
)

(v)

the main result follows:

‖J+(f, g)‖−1 � sup
ω

∫
R3

v

ϕ(v)|v −ω|−1J+(sup
x

f, sup
x

g)(v) dv

= V̂1(ϕJ+(sup
x

f, sup
x

g))

� C‖f ‖‖g‖.

3.3. An Estimate on ‖J+(f, f )‖
Lemma 4. For the norms ‖.‖−1, and ‖.‖ defined in (9) and (10), we

have

‖J+(f, f )‖�πs−1‖f ‖−1‖f ‖, s >0.

Proof. In order to estimate ‖J+(f, g)‖ we first evaluate the integral
∫

Kvv∗
exp{s|q|2}dσ(q)

in which Kvv∗ was defined in Section 3.1, with a unit vector e, given by
the components

e= (sin φ1 cos θ1, sin φ1 sin θ1, cosφ1)

and where it was also shown that

q = 1
2
(v +v∗)+ 1

2
|v −v∗|e and dσ(q)= 1

4
|v −v∗|2 sin φ dφ dθ.

Let r = (1/2)|v −v∗| be the radius of the sphere Kvv∗ . Then
∫

Kvv∗
exp{s|q|2}dσ(q)

= r2
∫ π

0

∫ 2π

0
es(v+v∗)2/4+sr(v+v∗)·e+s|v−v∗|2/4 sin φ1 dφ1 dθ1

=2πr2es(v+v∗)2/4
∫ π

0
esr(v+v∗)·e+s|v−v∗|2/4 sin φ1 dφ1.
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If we take the polar direction as v +v∗, then

r(v +v∗).e=|v +v∗|r cosφ1

and

∫
Kvv∗

exp{s|q|2}dσ(q)

=πs−1 |v −v∗|
|v +v∗|

[
es(|v+v∗|+|v−v∗|)2/4 − es(|v+v∗|−|v−v∗|)2/4

]
.

Now we let ϕ(q)=exp{s|q|2}, and for q, v, v∗ lying on the collision sphere,
ϕ(q)�ϕ(v)ϕ(v∗). Then, we obtain the estimate

∫
Kvv∗

ϕ(q) dσ(q) � πs−1 |v −v∗|
|v +v∗|ϕ(v)ϕ(v∗). (16)

From Lemma 2, we have for any function ϕ(v)∈ C(R3
v), ϕ �0, that

〈ϕJ+(f, f )〉

=
∫

R3×R3
f (v)f (v∗)|v −v∗|−1

{∫
Kvv∗

ϕ(q)B|q −v|−1 dσ(q)

}
dv dv∗.

For hard sphere collisions, where B =|q −v|| cos θ |� |q −v|,

〈ϕ(v) sup
x

J+(f, f )〉

�
∫

R3×R3
sup

x
f (v) sup

x
f (v∗)|v −v∗|−1

{∫
Kvv∗

ϕ(q) dσ

}
dv dv∗.
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Applying the estimate in (16), and using the norms defined in (9) and (10)
we obtain

‖J+(f, f )‖
�πs−1

∫
R3×R3

sup
x

f (v) sup
x

f (v∗)|v −v∗|−1 |v −v∗|
|v +v∗|ϕ(v)ϕ(v∗) dv dv∗

�πs−1 sup
v

∫
R3

ϕ(v) sup
x

f (v) dv

{∫
R3

ϕ(v∗)|v +v∗|−1 sup
x

f (v∗) dv∗
}

=πs−1 sup
v

∫
R3

ϕ(v)‖f (., v)‖L∞(0,1) dv

×
{∫

R3
ϕ(v∗)|v +v∗|−1‖f (., v∗)‖L∞(0,1) dv∗

}

=πs−1‖f ‖−1‖f ‖.

3.4. An Estimate on ‖J+(f, f )‖2

Lemma 5. There exists a positive constant C1 independent of f

such that

‖J+(f, f )‖2 �C1‖f ‖2 s �0, r �0,

where s and r are the parameters in the weight function ϕ(v), and ‖.‖2 is
the norm defined in (11).

Proof. We define a weight function ϕα(v) in such a way so that it
will concentrate on a plane E in R

3 as α → ∞. Without restricting the
generality we assume E to be the xy-plane. With this in mind, we choose
ϕα(v), to be

ϕα(v)=ϕ(v)
(α

π

)1/2
exp(−αv2

3),

where ϕ(v) is defined in Section 2. By Lemma 2, we have

∫
R3

v

ϕα(v)J+(f, f ) dv (17)

=
∫

R3

∫
R3

f (v)f (v∗)

{∫
Kvv∗

ϕα(q)
B(v −v∗, n)

|q −v||v −v∗| dσ(q)

}
dv dv∗.
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We take |v3| to be the distance of v from the xy-plane. We see by tak-
ing the limit α → ∞, that the only contribution of ϕα(v) is when v3 = 0,
hence concentrating on the plane E. Now we focus on the inner inte-
gral (in brackets) of Eq. (18), which we abbreviate by I . Since |B| � b1
|q −v||v −v∗|γ−1, we have

I � b1

∫
Kvv∗

ϕα(q)|v −v∗|γ−2 dσ(q)

= b1|v −v∗|γ−2
∫

Kvv∗
ϕα(q) dσ(q)

= b1|v −v∗|γ−2
∫

Kvv∗
ϕ(q)

(α

π

)1/2
e−αq2

3 dσ(q).

From Lemma 2, we have

I �b1|v −v∗|γ−2
(α

π

)1/2
ϕ(v)ϕ(v∗)

∫
Kvv∗

e−αq2
3 dσ(q)

so now we need to estimate the integral

∫
Kvv∗

e−αq2
3 dσ(q).

To do this, we exploit the geometry of the problem. We consider the
case where Kvv∗ does not intersect the plane E, (as seen in Fig. 1) and
that its origin is situated at the center of the sphere. Therefore, we write

∫
Kvv∗

e−αq2
3 dσ(q)= |v −v∗|2

4

∫ 2π

0

∫ π

0
e−αq2

3 sin φ dφdθ,

E

f

q3

=z zο

0

Fig. 1. Relative distance between a plane E ⊂R
3
v and sphere Kvv∗ .
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where |q3|= z◦ − (|v −v∗|/2) cos φ. This will give

I �b1|v −v∗|γ−2
(α

π

)1/2
ϕ(v)ϕ(v∗)2π

|v −v∗|2
4

∫ π

0
e−αq2

3 sin φ dφ,

where the integral has two possible estimates

|v −v∗|2
4

∫ π

0
e−αq2

3 sin φ dφ = |v −v∗|
2

∫ z◦+ |v−v∗|
2

z◦− |v−v∗|
2

e−αq2
3 dq3

≤ |v −v∗|
2

∫ ∞

−∞
e−αq2

3 dq3

≤ C|v −v∗|

or

|v −v∗|2
4

∫ π

0
e−αq2

3 sin φ dφ = |v −v∗|
2

∫ z◦+ |v−v∗|
2

z◦− |v−v∗
2

e−αq2
3 dq3

� |v −v∗|
2

∫ z◦+ |v−v∗|
2

z◦− |v−v∗|
2

dq3

≤ C|v −v∗|2.

This yields

I �C|v −v∗|γ−2 min{|v −v∗|, |v −v∗|2}ϕ(v)ϕ(v∗).

For γ ∈ [0,1] and positive constants C,C1

C|v −v∗|γ−2 min{|v −v∗|, |v −v∗|2}�C1.

Hence,

∫
R3

v

ϕαJ+(f, f ) dv

=
∫

R3

∫
R3

f (v)f (v∗)I dv dv∗

�C1

∫
R3

v

ϕ(v)‖f (x, v)‖L∞ dv

∫
R3

v

ϕ(v∗)‖f (x, v∗)‖L∞ dv∗

�C1‖f ‖2.
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By taking the limit as α → ∞ the integral on the left hand side of the
inequality will concentrate on the plane E, and thus, one establishes the
required estimate

sup
E

∫
E

ϕ(v)‖J+(f, f )‖L∞ dσ(v)�C1‖f ‖2.

4. EXISTENCE AND UNIQUENESS

Every set A is a closed subset of the Banach space X◦. Hence, we
apply the Banach fixed point theorem and achieve existence and unique-
ness of solution to problems (2)–(4). To proceed, we assume that f − (the
boundary data) satisfies the following conditions:

f − �0, ϕf − ∈L1(R3
v,L

∞(∂)), (18)

sup
ω

∫
|ω−v|−1ϕ(v)‖f −(., v)‖L∞(∂) <∞, (19)

sup
E

∫
E

ϕf −(i, v) dσ (v)<∞, i ={0,1} (20)

inf
x,v

ν(f −)=ν◦ >0. (21)

Now, we are in a position to prove existence and uniqueness of a solution
to the steady boundary value problems (2)–(4).

Lemma 6. Let s > 0, r � 1. There exists positive constants aj (j =
1, . . . ,5) such that AA ⊂ A if ε <a5.

Hence, we need to show that for suitable constants aj (j = 1, . . . ,5) and
f ∈A,

(a) Af �0, (b) ‖Af ‖�a1, (c) ν(Af )�a2,

(d) ‖Af ‖−1 �a3, (e) ‖Af ‖2 �a4.

Proof. To prove (a), we recall that since both f − �0 and 	(χ(v1))�
0, it is immediate that Wf −(x, v)=f −(χ(v1), v)	(χ(v1))� 0. Also, f � 0
will imply J+(f, f ) � 0 and therefore UJ+(f, f )(x, v) � 0. Hence, it fol-
lows that

Af �0 if f �0.
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To prove (b), we set

a1 =2[‖Wf −‖+‖Wf −‖−1 +‖Wf −‖2]

and show that for f ∈A, ‖Af ‖�a1. By the triangle inequality we write

‖Af ‖�‖Wf −‖+‖εUJ+(f, f )‖,

where we see from the definition of a1, that ‖Wf −‖�a1/2. Moreover,

‖εUJ+(f, f )‖ =
∫

R3
v

ϕ(v)ε|v1|−1
∥∥∥∥
∫ x

χ(v1)

J+(f, f )(y, v)	(x, y) dy

∥∥∥∥
L∞

dv

�
∫

R3
v

ε|v1|−1ϕ(v)

∥∥∥∥∥
∫ 1

0
J+(f, f )(y, v)	(x, y) dy

∥∥∥∥∥
L∞

dv,

where

‖J+(f, f )‖L∞ = sup
x

J+(f, f )

� J+(sup
x

f, sup
x

f )= ¯J+(f, f ).

Now by using the fact that for f ∈A, ν(f )�a2, we obtain

‖εJ+(f, f )‖�a2

∫
R3

v

ϕ(v) ¯J+(f, f )‖h‖L∞ dv (22)

where from the change of variables τ =a2(x −y),

h= ε|v1|−1
∫ 1

0
exp{−εv−1

1 τ }dτ.

Our strategy is to estimate the integral over v1, and bound the integral
over the variable v2, v3 by the norm ‖.‖2. Hence, we break up the integra-
tion in (22) corresponding to the v1 variable into a sum of two integrals.
The first integral is an integral over the set S1 ={|v1|<ε−1}, and the sec-
ond, is an integral over the set S2 = {|v1| > ε−1}. The part containing an
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integration over the set S1, we will denote by I1; and the part containing
the integration over S2, we denote by I2. So, we write

∫
R3

v

ϕ(v) ¯J+hdv =
∫

R

∫
R

∫
S1

ϕ(v) ¯J+hdv1 dv2 dv3

+
∫

R

∫
R

∫
S2

ϕ(v) ¯J+hdv1 dv2 dv3

= I1 + I2. (23)

In the domain, where |v1|>ε−1(|v1|−1 <ε), we have

h� ε2 +O(ε3),

which yields the estimate

I2 �
∫

R

∫
R

∫
S2

(
ε2 +O(ε3)

)
ϕ(v)‖ ¯J+‖L∞ dv +O(ε2)

� ε2‖ ¯J+‖.

Estimating I1 we have

I1 =
∫

|v1|<ε−1

ε

|v1|
∫ 1

0
exp{−ετ

|v1|
}dτ

(∫
R

∫
R

ϕ(v)‖ ¯J+‖L∞ dv2 dv3

)
dv1

�
∫

S1

ε

|v1|
∫ 1

0
exp{−ετ

|v1|
}dτ

(
sup
E

∫
E

ϕ(v)‖ ¯J+(f, f )‖L∞ dσ(v)

)

�‖ ¯J+‖2

∫
S1

ε

|v1|
∫ 1

0
exp{−ετ

|v1|
}dτ dv1.

By explicitly evaluating the inner integral in the above estimate, we have

∫ 1

0
exp{−ε|v1|−1τ }dτ = |v1|

ε
(1− e−ε|v1|−1

),

which gives

I1 � ‖ ¯J+‖2

[∫
|v1|<ε

(1− e−ε|v1|−1
) dv1 +

∫ 1/ε

ε

(1− e−ε|v1|−1
) dv1

]

� ‖ ¯J+‖2

[
2ε +

∫ 1/ε

ε

(1− e−ε|v1|−1
) dv1

]
. (24)
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Finally we need to estimate the integral in the inequality given in (24). By
making a change of variables, z = ε/|v1|, and doing a Taylor expansion
about the point z=0, we have

∫ 1/ε

ε

(1− e−ε|v1|−1
) dv1 = ε(ln 1− ln ε2)− ε

1
2
(1− ε2)+O(ε). (25)

Therefore, (24) now yields the estimate

I1 �‖ ¯J+‖2 [−2ε ln ε +O(ε)]

and in view of (22) and (23) one gets

‖εUJ+(f, f )‖ � a2(I1 + I2)

� a2‖ ¯J+‖2 [−2ε ln ε +O(ε)]+ ε2a2‖ ¯J+‖.

Using the results of Lemmas 3 and 4, we have for f ∈A

‖εUJ+(f, f )‖ � C1‖f ‖2 [−2ε ln ε]+ ε2C2‖f ‖‖f ‖−1 +O(ε)‖f ‖2

� C1a
2
1(−2ε ln ε)+ ε2C2a1a3 +O(ε)a2

1,

where, we see that as ε → 0,−2ε ln ε → 0. The other terms are even
smaller. Hence, we can pick ε small enough, i.e., ε <a5 such that

‖εUJ+(f, f )‖� a1

2

and

‖Af ‖ � ‖Wf −‖+‖εUJ+(f, f )‖
� a1

as required for the proof of (b). In order to prove (c), it suffices to show
that ν(Wf −) is bounded below by some positive constant. Therefore, we
define for any b>0 the set

I ={ω= (ω1,ω2,ω3)∈R
3
v : b−1 < |ω|<b, |ω1|>b−1}.
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We make the estimate

ν(Wf −)(x, v)

= 2π

∫
R3

v

|v −w|Wf −(χ(w1),w) dw

� 2π

∫
I

|v −w|f −(χ(w1),w)	(x,χ(w1)) dw

� 2π

∫
I

|v −w|f −(χ(w1),w) exp
{
−εw−1

1

∫ x

χ(w1)

ν(z,w)dz

}
dw

= 2π

∫
I

|v −w|f −(χ(w1),w)

× exp
{
−ε2πw−1

1

∫ x

χ(w1)

(∫
R3

|w −w′|f (z,w′) dw′
)

dz

}
dw,

where for f ∈A the integral in the exponential is estimated to be

∫
R3

|w −w′|f −(z,w′) dw′

� |w|
∫

R3
f −(z,w′)ϕ(w′) dw′+

∫
R3

f −(z,w′)ϕ(w′) dw′

= (1+|w|)‖f ‖
� (1+b)a1.

Therefore,

ν(Wf −)(x, v) � 2π

∫
I

|v −w|f −(χ(w1),w)e−ε2πb(1+b)a1 dw

= 2πe−ε2πb(1+b)a1

∫
I

|v −w|f −(χ(w1),w) dw.

Let δ > 0, and 0 <δ ≤ (1/4)ν◦ for some positive constant ν◦. First choose
b such that for all v

inf
v

∫
I

|v −w|f −(χ(w1),w) dw �ν◦ − δ � 3
4
ν◦,

then choose ε such that

2πe−ε2πb(1+b)a1(ν◦ − δ)� ν◦
2

.
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Letting a2 =ν◦/2, it follows that ν(Wf −)�a2, and hence

ν(Af )�a2,

which is the desired result. Now, we have to bound ‖Af ‖−1. From the tri-
angle inequality, and the definition of a1, one has

‖Af ‖−1 � a1

2
+‖εUJ+(f, f )‖−1.

For f ∈A, ν(f )�a2, and hence

	(x, y)� exp{−ε|v1|−1a2(x −y)}.

By applying the definition of the operator UJ+(f, f ) in (7), and the norm
‖.‖−1, we write

‖UJ+(f, f )‖−1

� sup
ω

∫
R3

v

ϕ(v)|v −ω|−1|v1|−1
∫ 1

0
‖J+(f, f )‖L∞‖	(x, y)‖L∞ dy dv

� sup
ω

∫
R3

v

ϕ(v)|v −ω|−1|v1|−1‖J+(f, f )‖L∞

∥∥∥∥∥
∫ 1

0
e−ε|v1|−1a2τ dτ

∥∥∥∥∥ dv,

where, we make the change of variables τ = x − y. We explicitly evaluate
the integral in the above estimate to be

∫ 1

0
exp{−ε|v1|−1τa2}dτ � |v1|

εa2
,

which then yields

ε‖UJ+(f, f )‖−1 � ε sup
ω

∫
R3

v

ϕ(v)|v −ω|−1|v1|−1‖J+(f, f )‖L∞

( |v1|
εa2

)
dv

= a−1
2

∫
R3

ϕ(v)|v −ω|−1‖J+(f, f )‖L∞ dv

= ‖J+(f, f )‖−1a
−1
2 .

Again for f ∈A, we have by Lemma 3 that

‖εUJ+(f, f )‖−1 � C‖f ‖2a−1
2

� Ca2
1a2

−1,
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Thus, by letting a3 = a1/2 + Ca2
1a2

−1, we have the required estimate for
part (d) of the proof. Finally, the last part of the proof is done in the same
manner as before. From the definition of a1

‖Af ‖2 � a1

2
+ ε‖UJ+(f, f )‖2,

where by applying the definition of UJ+(f, f ) and the norm ‖.‖2, we have
the following estimate:

ε‖UJ+(f, f )‖2

� ε sup
E

∫
E

ϕ(v)‖J+(f, f )‖L∞|v1|−1

∥∥∥∥∥
∫ 1

0
e−ε|v1|−1a2τ dτ

∥∥∥∥∥dv

� sup
E

∫
E

‖J+(f, f )‖L∞a−1
2 dv

=a−1
2 ‖J+(f, f )‖2.

Upon applying Lemma 5, for f ∈A one obtains

‖εJ+(f, f )‖2 � Ca−1
2 ‖f ‖2

� Ca2
1a−1

2 .

Letting a1/2+Ca2
1a−1

2 =a3,

‖Af ‖2 �a3.

Proof of Lemma 1. Since f −(x, v), and g−(x, v) are prescribed
functions at the boundary, it follows that Wf − =Wg−. Applying the fact
that Af =Wf − + εUJ+(f, f ) we have

‖Af −Ag‖ = ε
∥∥(UJ+(f, f )−UJ+(g, g)

)∥∥
� ε

∫
R3

v

ϕ(v)|v1|−1

×
(∫ 1

0
‖(J+(f, f )−J+(g, g))‖L∞‖	(x, y)‖L∞ dy

)
dv.

From the property of the collision term

‖J+(f, f )−J+(g, g)‖L∞ �‖J+(f −g, f +g)+J+(f +g, f −g)‖L∞ .
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An application of the symmetry property of J+(f, f ) along with the
definition of 	(x, y), leads to the estimate

‖Af −Ag‖�2ε

∫
R

3
v

ϕ(v)‖J+(f −g, f+g)‖L∞|v1|−1

(∫ 1

0
e−ε|v1|−1τ dτ

)
dv,

(26)

where τ =a2(x −y). It is easily verified that the inner integral

∫ 1

0
e−ε|v1|−1τ dτ = |v1|

ε
(1− e−ε|v1|−1

).

Therefore, by decomposing the integration in (26) in the same manner as
in Lemma 6, we are able to explicitly evaluate the integration over the v1
variables, and estimate the part which defines the plane E by the norm
‖.‖2. Hence, we write

‖Af −Ag‖ � 2ε

∫
|v1|<ε−1

|v1|−1 |v1|
ε

(1− e−ε|v1|−1
)dv1

×
∫

R

∫
R

ϕ(v)‖J+(f −g, f +g)‖L∞ dv2 dv3

+2ε2
∫

|v1|>ε−1
dv1

∫
R

∫
R

ϕ(v)‖J+(f −g, f +g)‖L∞ dv2 dv3,

where we have used the fact that in the domain, where |v1|>ε−1

|v1|
ε

(1− e−ε|v1|−1
)=1+O(ε).

We can estimate the integral in this domain by the norm ‖.‖ defined in
(10). Hence we have

‖Af −Ag‖ � 2
∫

|v1|<ε−1
(1− e−ε|v1|−1

) dv1

×
{

sup
E

∫
E

ϕ(v)‖J+(f −g, f +g)‖L∞ dσ(v)

}

+2ε2‖J+(f −g, f +g)‖.
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By (25) the integral in the domain, where |v1|<ε−1 can be approximated
to be

∫
|v1|<ε−1

(1− e−ε|v1|−1
) dv1

=
∫

|v|<ε

(1− e−ε|v1|−1
) dv1 +

∫ 1/ε

ε

(1− e−ε|v1|−1
) dv1

�
∫

|v1|<ε

dv1 +2ε ln
1
ε

− 1
2
ε +O(ε)

�2ε ln
1
ε

+O(ε).

Going back to the original estimate,

‖Af −Ag‖
�2

(
O(ε)+2ε ln

1
ε

){
sup
E

∫
E

ϕ(v)‖J+‖L∞ dσ(v)

}
+ν◦ε2‖J+‖

�C1

[
O(ε)+ ε ln

1
ε

]
‖J+‖2 + ε2‖J+‖.

By taking ε to be small, one can ignore the second order epsilon term and
focus only on the first term. Now applying Lemma 5 we have for f, g ∈A

‖Af −Ag‖ � C1

[
ε + ε ln

1
ε

]
‖f −g‖‖f +g‖

� C1

[
ε + ε ln

1
ε

]
‖f −g‖ (‖f ‖+‖g‖)

� C

[
ε + ε ln

1
ε

]
‖f −g‖

� Cε ln
1
ε
‖f −g‖.

It is immediate that if we choose ε small enough so that Cε ln(1/ε)<1 we
have a contraction; and Theorem 1 follows.

5. DIFFUSE REFLECTION

In this section, we extend the results for the inflow case to the case,
where we have diffuse boundary conditions. In particular, we study the
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Couette problem, and the existence-uniqueness results associated with it.
Therefore, we consider the boundary value problem

v1
∂f

∂x
= εJ (f, f ), (27)

f (0, v) = M(0, v)N◦(f ) if v1 >0, (28)

f (1, v) = M(1, v)N1(f ) if v1 <0, (29)

where N◦,N1 represent the fluxes entering and exiting the slab, respec-
tively, and are expressed as

N◦(f ) =
∫

v1<0
|v1|f (0, v) dv,

N1(f ) =
∫

v1>0
|v1|f (1, v) dv.

The functions M(i, v) are in the one-dimensional case defined to be

M(i, v)= (2π)−1h2
i exp(−|v|2hi/2),

where i belongs to the set {0,1}; which are the positions at the two
endpoints of the slab. Here, we also recall that hi are some positive con-
stants determined by the temperature at the two endpoints. By a simple
calculation,

∫
v1>0

M(0, v)|v1|dv =
∫

v1<0
M(1, v)|v1|dv =1

and therefore upon multiplying f (i, v) by |v1| and integrating, we obtain
∫

v1>0
|v1|f (0, v) dv =

∫
v1>0

|v1|M(0, v)N◦(f ) dv =N◦(f )

and
∫

v1<0
|v1|f (1, v) dv =

∫
v1<0

|v1|M(1, v)N1(f ) dv =N1(f ).

In general, the boundary value problems (25)–(27) does not possess a
unique solution. However, we show that for any given constant C◦ there
exists a unique solution to (25)–(27) which satisfies the added constraint

N◦(f )+N1(f )=C◦. (30)
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5.1. STRUCTURE OF THE PROBLEM

In order to, find a unique solution for the Couette problem, we seek
functions f −(i, v) in the form

f −(i, v)=M(i, v)Ni,

where Ni are constants we need to find. Let V be the solution operator
for Eq. (5), and denote by W◦,U◦ the operators (6) and (7) with 	= 1.
Therefore,

(W◦f −)(x, v) = f −(χ(v1), v), (31)

(U◦J )(x, v) = v−1
1

∫ x

χ(v1)

J (f, f )(y, v) dy. (32)

Integrating Eq. (25) and applying the boundary conditions (26) and (27),
the solution to the Couette problem can be expressed in the form

f =Vf −, Vf − =W◦f − + εU◦J (Vf −, Vf −). (33)

Remark 3. We see that Wf − prescribes the function at the bound-
ary. As a particle of gas begins to emerge, say at the boundary x = 1,
its total number of collisions from x = 1 to 0 would be determined by
εUJ (Vf −, Vf −).

In view of the above remark, if we multiply Eq. (33) by |v1| and integrat-
ing, we obtain

∫
v1<0

|v1|f (0, v) dv

=
∫

v1>0
|v1|f −(1, v) dv + ε

∫
v1>0

∫ 0

1
J (Vf −, Vf −)(y, v) dy dv,

which give the following relations:

N◦ =N1(f )− εG(N), N1(f )=N◦ + εG(N), (34)

where

G(N)=
∫

v1>0

∫ 1

0
J (Vf −, Vf −)dy dv (35)
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and N is the vector (N◦,N1). By substituting (34) into (30), the following
conditions are satisfied:

N◦(f ) = 1
2
(C◦ − εG(N)), (36)

N1(f ) = 1
2
(C◦ + εG(N)). (37)

In Section 5.2, the contractive property of the operator εG(N) is proved.
This result makes use of an estimate on the collision gain term, given by
ref. 16 and is based on some properties of the collision operator which is
a generalization of Carleman’s results(10). We will not prove this in detail
here, but for the convenience of the reader, we only present the main idea
of the proof.

5.2. Contraction Property of G

5.2.1. A Technicality

We consider the space

L∞
s,r =

{
f | ϕsr |f | ∈L∞(R3

v)
}

with the weight function ϕ ≡ϕsr defined in Section 2, and for f ∈L∞
sr we

introduce the norm

‖f ‖sr =ϕ(v)‖f ‖L∞ .

Then,

Lemma 7. If f ∈ L∞
s,r , s > 0, r > 4, then J+(f, f ) ∈ L∞

s,r . Moreover,
there exists a positive constant C such that

‖J+(f, f )‖s,r �C‖f ‖2
s,r .

Proof. We keep v fixed and making the change of variables

(v∗, n)→ (p =v −n(n.(v −v∗)), q =v∗ +n(n.(v −v∗))) ,

where it is easy to see that p − v and q − v are orthogonal. Following
Carleman,(10) we can derive a representation of J+(f, g) in which the inte-
gration over dndv∗ is replaced by an integration over dq dp, where q
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ranges over Evp, the plane, which is orthogonal to v −p and, contains v,
and, where p ranges over R

3. This is seen in Fig. 2. Let p=v−sn, where s

is the scalar quantity n.(v−v∗). For any fixed n and v, one may write v∗ =
q − sn. We can express p in spherical polar coordinates with the origin at
v. Hence, we have p =−sn and writing this out in its components yields
(p1, p2, p3) = −s(sin φ cos θ, sin φ sin θ, cos φ) in which we recognize the
volume element dp= s2 sin φ ds dθ dφ = s2 ds dn. Also since dq is the area
element of the plane Evp, and v∗ ∈ R

3, we would have dv∗ = dq ds (see
Fig. 2). Hence dv∗ dn= dq ds dn= (1/s2)dq dp, where sn=n(n.(v − v∗))=
v − p. Thus dv∗ dn = (1/|v −p|2) dq dp and we can now express J+(f, g)

as

J+(f, g)(v)=2
∫

R3
v

f (p)|v −p|−2

[∫
Evp

g(q)B dq

]
dp, (38)

where the factor 2 is due to the fact that each plane is represented by two
opposite directions n. The collision kernel in terms of the variables p,q

satisfies,

B(p −q, n)≤b1|v −p|γ

for some positive constant b1 and γ ∈ [0,1]. Therefore, we have

|J+(f, g)| � 2b1

∫
R3

v

|f (p)||v −p|−2|v −p|γ
[∫

Evp

|g(q)|dq

]
dp

= 2b1

∫
R3

v

|f (p)||v −p|−2+γ

[∫
Evp

|g(q)|dq

]
dp

= V2−γ (|f |G(|g|)), (39)

q Eυp

p

υ

υ∗

-sn

Fig. 2. Figure representing the Carleman transformation.
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where we define

Vk(f ) = 2b1

∫
R3

v

|v −p|−kf (p) dp, (40)

G(f )(v,p) =
∫

Evp

f (q) dq. (41)

To proceed further, we define for any fixed v the following sets:

D1 =
{
p ∈R

3
∣∣∣|p|≤ |v|√

2

}
,

D2 =
{
p ∈R

3
∣∣∣ |v|√

2
< |p|< |v|

}
,

D3 =
{
p ∈R

3
∣∣∣|p|� |v|

}

and we let

fi(p)=f (p)χi(p) for i =1,2,3,

where χi is the indicator function of Di . Making use of the fact, that
J+(f, f ) is bilinear with respect to f , and applying the symmetry prop-
erty of the collision term, we write,

J+(f, f ) = J+(f1, f1)+2J+(f1, f2)+2J+(f2, f3)

+2J+(f1, f3)+J+(f2, f2)+J+(f3, f3).

We investigate the boundedness of each term separately, using (39) and the
definition of ‖.‖sr . Due to very lengthy calculations, however, we only refer
the reader to ref. 13 for details.

Lemma 8. For some positive constant C1 independent of N , the
following estimate is true:

|G|�C1 (max{N◦,N1})2 .

Proof. For f ∈A we know that

‖f ‖�a1 =2
[‖Wf −‖+‖Wf −‖−1 +‖Wf −‖2

]
.
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We estimate each of the terms above separately, and find an estimate on
a1, in terms of N◦,N1. Hence,

‖Wf −‖ =
∫

R3
v

ϕ(v)
∥∥f −(i, v)	(i)

∥∥
L∞ dv

=
∫

R3
v

ϕ(v)‖M(i, v)Ni	(i)‖L∞ dv

� 1
2π

‖h2
i ‖L∞

∫
R3

v

ϕ(v)e−|v|2hi/2Ni dv

= Ni

2π

∫
R3

v

(1+|v|2)re(s−hi/2)|v|2 dv.

For s <mini hi/2, the integral in the above expression will be bounded by
a constant and so

‖Wf −‖�C1Ni �C1 (max{N◦,N1}) .

Estimating ‖Wf −‖−1, we have from the definition of the norm in (9),

‖Wf −‖−1 = sup
ω

∫
R3

v

ϕ(v)|v −ω|−1 ‖M(i, v)Ni‖L∞ dv

= Ni

2π
‖h2

i ‖L∞ sup
ω

∫
R3

v

(1+|v|2)re(s−hi)|v|2/2|v −ω|−1 dv

= CNi‖e−|v|2hi/2‖−1

for s <mini hi/2 , and f (., v)= e−|v|2hi/2 (a Maxwellian). Hence,

‖Wf −‖−1 =C2Ni (max{N◦,N1}) .

Similarly, the same estimate for ‖Wf −‖2 follows, namely that:

‖Wf −‖2 �C3 (max{N◦,N1}) .

Therefore, it is clear that

‖f ‖�a1 �C max{N◦,N1} (42)
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for a positive constant C independent of N , and f ∈A. To estimate G, we
have

|G| =
∫

v1>0

∫ 1

0
|J (Vf −, Vf −)|dy dv

�
∫

v1>0

∫ 1

0
(1+|v|2)es|v|2e−s|v|2 |J+(Vf −, Vf −)|dy dv

+
∫

v1>0

∫ 1

0
(1+|v|2)es|v|2e−s|v|2 |J−(Vf −, Vf −)|dy dv.

Estimating the part in the above inequality involving the gain term, we
have by applying Lemma 7, that for s <mini hi/2

∫
v1>0

∫ 1

0
(1+|v|2)es|v|2e−s|v|2 |J+(Vf −, Vf −)|

�
∫

R3
v

‖J+(Vf −, Vf −)‖s,1e
−s|v|2 dv

�C

∫
R3

v

‖f ‖2
s,1 dv

�C

∫
R3

v

‖M(i, v)N‖s,r ‖f ‖s,r dv

�C|N | ‖f ‖.

The estimate for the loss term is even simpler and is obtained in the same
manner. From inequality (42) we have the required estimate

|G|�C1 (max{N◦,N1})2 .

Lemma 9. The operator εG(N) is a contraction.

We assume two different solutions of the form

f −(i, v) = M(i, v)Ii,

f −(i, v) = M(i, v)Ji,

where Ii and Ji are components of I and J , respectively. In Lemma 8, we
showed

|G(I)| � C1(max{I◦, I1})2,

|G(J )| � C2(max{J◦, J1})2
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for positive constants C1, and C2. Thus we have

G(I −J ) � C (max{I◦ −J◦, I1 −J1})2

� C (max(I◦ −J◦, I1 −J1)) (max(I◦ +J◦, I1 +J1))

� C|I −J |(I◦ + I1 +J◦ +J1).

By (30) we know that for any given constants C◦, C1 there exists a unique
solution satisfying the conditions

I◦ + I1 = C◦,
J◦ +J1 = C1.

Therefore,

εG(I −J )�Cε|I −J |.

So, we have that the system in (33) has a unique solution for small ε. Now
let W− be defined by

W− ={f ∈L∞ : ((1+|v|2)−1Df ∈L∞}

with Df given by

Df =v1
∂f

∂x
.

We are now ready to state the main result of this section

Theorem 2. There exists a positive constant ε◦ such that the prob-
lems (27)–(29) has a unique solution in W−, if ε<ε◦, s ∈ (0,mini (1/2)hi).

6. CONCLUSION

In this paper, we derived some existence and uniqueness results for the
one-dimensional Boltzmann equation in a slab. This relied mainly on the
suitable choice of space where we prove the necessary estimates on the col-
lision term. With the use of the norms (9)–(11) it was possible to handle the
singularity at v1 = 0, and control the unboundedness in the collision term
for hard sphere interactions when v → ∞. As a result, the estimates that
were obtained introduced the special properties of the Boltzmann collision
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operator which eliminated the need for truncating the collision kernel as in
ref. 16.

Even though, the results presented here resolve previous difficulties
in proving existence and uniqueness for the steady Boltzmann equation,
it has its limitations. We notice that these problems were solved with the
inclusion of a parameter ε in front of the collision term, which is due to
a rescaling of the spatial variables. Our results are obtained by allowing
ε→0; however, one should point out that in doing this we are not neglect-
ing collisions completely, but we are restricting the problem to particles
having large mean free paths.
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